Changes by: Xin Yu (xiny at cs.caltech.edu)
Date: 2002-03-24 00:26:30 -0800 (Sun, 24 Mar 2002)
Revision: 3547
Log message:
Defined homomorphism for groups. A map f of a group G into a group G'
is a homomorphism if f(a * b) = f(a) * f(b).
Proved some properties of homomorphism with the definition.
Since I would redo groups soon, this homomorphism file is not complete.
Changes | Path |
Added | metaprl/theories/czf/czf_itt_hom.ml |
Properties | metaprl/theories/czf/czf_itt_hom.ml |
Added | metaprl/theories/czf/czf_itt_hom.mli |
Properties | metaprl/theories/czf/czf_itt_hom.mli |
Added | metaprl/theories/czf/czf_itt_hom.prla |
Properties | metaprl/theories/czf/czf_itt_hom.prla |